Perturbation analysis of embedded eigenvalues for water-waves

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Second Order Perturbation Theory for Embedded Eigenvalues

We study second order perturbation theory for embedded eigenvalues of an abstract class of self-adjoint operators. Using an extension of the Mourre theory, under assumptions on the regularity of bound states with respect to a conjugate operator, we prove upper semicontinuity of the point spectrum and establish the Fermi Golden Rule criterion. Our results apply to massless Pauli-Fierz Hamiltonia...

متن کامل

Perturbation of eigenvalues embedded at a threshold

Results are obtained on perturbation of eigenvalues and half-bound states (zero-resonances) embedded at a threshold. The results are obtained in a two-channel framework for small off-diagonal perturbations. The results are based on given asymptotic expansions of the component Hamiltonians.

متن کامل

Boundary Perturbation Methods for Water Waves

The most successful equations for the modeling of ocean wave phenomena are the free– surface Euler equations. Their solutions accurately approximate a wide range of physical problems from open–ocean transport of pollutants, to the forces exerted upon oil platforms by rogue waves, to shoaling and breaking of waves in nearshore regions. These equations provide numerous challenges for theoretician...

متن کامل

Perturbation Methods for Bifurcation Analysis from Multiple Nonresonant Complex Eigenvalues

It is shown that the logical bases of the static perturbation method, which is currently used in static bifurcation analysis, can also be applied to dynamic bifurcations. A two-time version of the Lindstedt–Poincaré Method and the Multiple Scale Method are employed to analyze a bifurcation problem of codimension two. It is found that the Multiple Scale Method furnishes, in a straightforward way...

متن کامل

Homotopy perturbation method for eigenvalues of non-definite Sturm-Liouville problem

In this paper, we consider the application of the homotopy perturbation method (HPM) to compute the eigenvalues of the Sturm-Liouville problem (SLP) which is called non-definite SLP. Two important Examples show that HPM is reliable method for computing the eigenvalues of SLP.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2015

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2015.02.050